Stochastic optimal control of single neuron spike trains.
نویسندگان
چکیده
OBJECTIVE External control of spike times in single neurons can reveal important information about a neuron's sub-threshold dynamics that lead to spiking, and has the potential to improve brain-machine interfaces and neural prostheses. The goal of this paper is the design of optimal electrical stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. APPROACH We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic origin. In particular, we allow for the noise to be of arbitrary intensity. The optimal control problem is solved using dynamic programming when the controller has access to the voltage (closed-loop control), and using a maximum principle for the transition density when the controller only has access to the spike times (open-loop control). MAIN RESULTS We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy of control degrades with increasing intensity of the noise. Simulations show that our algorithms produce the desired results for the LIF model, but also for the case where the neuron dynamics are given by more complex models than the LIF model. This is illustrated explicitly using the Morris-Lecar spiking neuron model, for which an LIF approximation is first obtained from a spike sequence using a previously published method. We further show that a related control strategy based on the assumption that there is no noise performs poorly in comparison to our noise-based strategies. The algorithms are numerically intensive and may require efficiency refinements to achieve real-time control; in particular, the open-loop context is more numerically demanding than the closed-loop one. SIGNIFICANCE Our main contribution is the online feedback control of a noisy neuron through modulation of the input, taking into account physiological constraints on the control. A precise and robust targeting of neural activity based on stochastic optimal control has great potential for regulating neural activity in e.g. prosthetic applications and to improve our understanding of the basic mechanisms by which neuronal firing patterns can be controlled in vivo.
منابع مشابه
Resonance in a Stochastic Neuron Model with Delayed Interaction
We study here a simple stochastic single neuron model with delayed self-feedback capable of generating spike trains. Simulations show that its spike trains exhibit resonant behavior between "noise" and "delay". In order to gain insight into this resonance, we simplify the model and study a stochastic binary element whose transition probability depends on its state at a fixed interval in the pas...
متن کاملComputing loss of efficiency in optimal Bayesian decoders given noisy or incomplete spike trains.
We investigate Bayesian methods for optimal decoding of noisy or incompletely-observed spike trains. Information about neural identity or temporal resolution may be lost during spike detection and sorting, or spike times measured near the soma may be corrupted with noise due to stochastic membrane channel effects in the axon. We focus on neural encoding models in which the (discrete) neural sta...
متن کاملNeuronal Spike Trains
ABsTRAcr In a growing class of neurophysiological experiments, the train of impulses ("spikes") produced by a nerve cell is subjected to statistical treatment involving the time intervals between spikes. The statistical techniques available for the analysis of single spike trains are described and related to the underlying mathematical theory, that of stochastic point processes, i.e., of stocha...
متن کاملSelf-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity
A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from ...
متن کاملInformation transmission with spiking Bayesian neurons
Spike trains of cortical neurons resulting from repeated presentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neural engineering
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2014